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Summary. — The (relatively few) works of Fermi within the fields of classical
physics had, and still have, a deep impact on our understanding of the structure
of phase space of generic nonlinear systems, along with the relative implications
on the justification of a statistical description of macroscopic systems and the ap-
proach towards equilibrium. One of those milestones along the path to reconcile
microscopic dynamics with macroscopic description is the first inverse experiment,
performed by Fermi, Pasta, Ulam and Tsingou on an one-dimensional anharmonic
chain (FPU model). After a brief historical introduction whose aim is mainly to
show how that revolutionary experiment frames perfectly into Fermi’s personality, I
discuss how this model, and particularly the philosophy beyond it, can be considered,
still today, a valid conceptual paradigm. 1 show how to obtain analytical estimates
of dynamic and geometric quantities through which it is possible to generalize the
existing definitions of chaoticity indicators and of the threshold marking the onset of
strong chaos. Nevertheless, as far as some of the most recent successful approaches
to FPU problem are concerned, I outline how these cannot be generalized painlessly.
Discussing in some details why they work for FPU-like models, we meet with the
difficulties and troubles emerging when trying to applying them to peculiar Hamil-
tonian systems, for which these methodologies can give, at most, just some hints on
their macroscopic behaviour. In particular, I review some conceptual and technical
aspects of the combined use of the geometrical transcription of dynamics and the
theory of stochastic differential equations, pointing out the issues preventing a direct
extension to more general systems.
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Notwithstanding, this analysis gives noteworthy hints even on the much more contro-
versial issue of a statistical description of gravitationally interacting N-body systems,
furthermore allowing to understand some seemingly inconsistent results existing in
the literature.

PACS 01.65.+g — History of science.

PACS 05.20.-y — Classical statistical mechanics.

PACS 05.45.-a — Nonlinear dynamics and nonlinear dynamical systems.
PACS 01.30.Cc — Conference proceedings.

1. — Introduction

Enrico Fermi, allegedly, spent most of his research activities on atomic and nuclear
physics [1,2]; nevertheless his digressions from that main path revealed outmostly fruitful
and stimulating, both because of the originality of issues addressed and the novelty of the
approaches proposed. To this it must be added the usual depth and clarity of physical
reasoning (using Feynman’s words [3]) of almost all Fermi investigations.

Among his most relevant studies within the fields of classical (i.e. non-quantum)
physics, it should be certainly mentioned the extension of the Poincaré theorem [4] on the
non existence of analytic first integrals for (generically) perturbed Hamiltonian systems,
who renforced the belief that, from a practical point of view, a generic nonlinear system
had to be ergodic, and consequently it could be successfully described by Statistical
Mechanics (SM) methods. That theorem was probably one of the inspirations for the
first inverse experiment performed with Pasta, Ulam and Tsingou devised to verify the
approach towards equilibrium of nonlinear many degrees of freedom (mdof) systems [5].

There are, of course, many other Fermi’s seminal contributions to classical dynamics,
many of them with direct astrophysical implications: we just recall how his interest on
the origin of high energy cosmic rays, led to the formulation of a very simple and elegant
model for particle acceleration [6, 7], which became, again, a paradigmatic example for
the interpretation of a wide class of phenomena, in the fields of fluid dynamics and
chaotic systems (see, e.g., ref. [8]). He, young, gave also important contributions to the
interpretation of some aspects of general relativity (when even that theory was almost
in its infancy), strictly linked to one of its most physically pregnant concepts, i.e. the
Equivalence Principle [9,10]. His statistical model of (heavy) nuclei [11,12], found later
interesting extensions to the description of gravitationally collapsed objects [13].

Furthermore, the attraction felt by Fermi towards SM and thermodynamics is wit-
nessed not only by his celebrated fundamental studies [14] on the distribution law of
half-integer spin particles(!) (owing him their name), but also by his involvement in
writing down the Statistical Mechanics item for the Enciclopedia Italiana [16] and sev-
eral monographies and textbooks on the same subject, on thermodynamics and even on

() And it is worth mentioning that, contrary to what usually reported, Fermi was led to this
very important result by his aim at obtaining a satisfactory derivation of the Sackur-Tetrode
formula for the entropy of an ideal monoatomic gas, rather than by its (presumed) interests
in the conduction in metals [15]. This confirms the persistent attention maintained by Fermi
towards the basic concepts of thermodynamics.
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fluid dynamics [17].

Nowadays, however, the work of Fermi, referred to as the most thought-provoking for
modern studies on the links between classical dynamics and SM foundations, is certainly
the pioneering inverse experiment(?) mentioned above [5], whose goal was to find a dy-
namical (microscopic) justification of the occurrence and effectiveness of thermodynamic
(macroscopic) relaxation processes in generic non-integrable dynamical systems(®).

Very good discussions about the implications of the FPU experiment on SM founda-
tions can be found in this volume (see, e.g., ref. [18]), also in connection with the issue
of relaxation in stellar systems [19].

Therefore, in the following, rather than again commenting on the outcomes of that
experiment and of its technologically improved successive repetitions, I will put more
emphasis on the interpretations and generalization of those approaches which can be
relevant for the long-standing issue of a rigorous justification of the statistical approach
for mechanical systems [20].

More specifically, I deal with the signatures accompanying the onset of chaos in mdof
Hamiltonian systems, using alternative tools to characterize and quantify the degree of
instability. Within the phenomenology of the FPU model, it is possible to introduce
a (rather elementary) generalization of Lyapunov exponent (or LCN), which, despite
its simplicity, allows to overcome the ambiguities raising in some settings, mainly of
astrophysical or cosmological interest. On its grounds, the implications of the onset of
chaos in general mdof Hamiltonian systems are discussed, with some emphasis on the
gravitationally bound N-body problem, where important caveats have to be kept in mind.
On this light, I review critically the approaches which revealed very fruitful for the study
of FPU-like models, and discuss the points which deserve a critical reconsideration, when
trying to extend the above frames to more critical Hamiltonians. I derive some analytical
(or semi-analytical) expressions for relevant quantities related to dynamical, geometrical
and statistical scales of time and energy for the FPU model, and outline why similarly
reliable estimates cannot be obtained so easily for the much more complex gravitational
N-body system, discussing analogies and differences.

In a sense, the key ingredient of the analyses that follow has its foundation in the belief
that the relevant, macroscopic (i.e. thermodynamic) properties of mdof systems can be
obtained, in the generic case, by relatively simple and general physical considerations,
supported by rather elementary mathematical computations. Obviously, peculiar systems
and/or further investigations on detailed aspects can instead require articulated physical
argumentations, and perhaps also (more) sophisticated mathematical treatment.

The approach just outlined is an (arduous and humble) attempt to follow what was

(?) 1 prefer to term the numerical integrations of the equations of motion of model systems as
inverse experiments. Without going into detailed (and here inopportune) discussions, a loose
rationale is that there, instead of starting from observations, from where trying to formulate
a tentative general law, open to successive refinements and improvements through laboratory
experiments, one starts from a certain hypothetical law to obtain experimental data, to be
compared (hopefully!) with observations of the real physical system whose modellization is
sought.

(3) The depth of Fermi insights into the issue of relaxation and the foundations of the statistical
description of mdof systems earned him a very deep esteem even by one of the founding fathers
of SM, i.e. Ehrenfest, who manifested repeatedly his interest in a collaboration with Fermi,
which however has never been finalized [15].
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Fermi’s initial attack to complicated problems. As universally recognized(*), Fermi re-
searches, and teaching as well, were characterized by the already mentioned clarity of
physical reasoning [3], which is undoubtedly connected with his ability to keep expla-
nations simple, emphasizing conceptual understanding rather than calculations [22]. He
was firmly convinced that, exposing physics in simple terms, forces the clarification of his
own comprehension, and taught, even in his informal lectures, that knowledge of physics
is achieved gradually, insisting that a deep understanding profits mostly by intuitive and
geometric, rather than analytic arguments (see ref. [1], p. 673). Fermi repeated often that
a first attack to solve a new and difficult problem must proceed through simplifications
and analogies with known situations, and that every logical step had to be made with
due reflection, even at the cost to proceed slowly.

There are a lot of appealing aspects in Fermi’s trait: the preference he showed towards
problems whose solutions can be guessed by simple calculations, based mainly on order of
magnitude estimates [23]; his deep and active involvement in the experimental setup and
his genial intuitions about the possibility to project and realize completely new kind of
experiments, using tools which were appointed before for different tasks (see [24], p. 19).
Also it must be mentioned his enthusiasm which led him to actively participate even in
the practical implementation of his projects; e.g., he was so much involved in the task
of testing the validity of the ergodic hypothesis that, in a few weeks, he was able to
effectively contribute in programming electronic machines.

The above repeatedly mentioned preference for heuristic and qualitative approaches
should not be interpreted absolutely as a lack of rigor; as Ulam wrote (see ref. [24] p. 15),
Strangely enough, [Fermi] started as a mathematician. [...]. When he wanted to, he
could do any kind of mathematics.”.

To further exemplify the innate Fermi attitude towards a deep, conceptual, and, at the
same time, physical and intuitively understandable comprehension of real phenomena, it
suffices to rememeber his opinion (after his period in Gottingen, around 1925) against the
operational and formal foundations of the rising Quantum Mechanics, especially in the
form of a Mechanics of Matrices: “according to my taste, I feel that they are going too far
along the tendence to renonce to understand the things” (cited in ref. [25]). Coherently
with this dislike for methods and approaches that work, though it is not well understood
why; Fermi’s projects for his, unfortunately never arrived, “old age” included the writing
of a Physics book addressing all those difficult points usually concealed behind phrases
like “it is well known that...” [21].

Fermi’s genius was always moderated by a serious, systematic preparation, that led
Feynman to feel himself affected by confusion, facing with “the clarity of the exposi-
tion and the perfection [...] to make everything look so obvious and beatifully simple”,
whenever Fermi gave a lecture “about any subject whatever he had thought before” [3].

When necessary, after the first heuristic and qualitative attack, Fermi was always able
to go beyond this initial framing of the problem, completing all the detailed physical
arguments and mathematical steps to arrive at a comprehension of the phenomena at
hand as complete as possible. Thus, presenting, six months before the submission of Dirac
article on the same subject, his quantum theory of the ideal gas, “Fermi worked out its
consequences in more detail [and], [...], showed that at low temperatures the equation of

(*) See the tribute to Fermi [21], from where I have extracted some of the memoirs that follow.
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state of the Fermi-Dirac gas has the form (from ref. [26], pp. 160-1)

ah?n®3  bmnl/3E%T?
+
m h?

(1) p=

All the above is an attempt to outline Fermi’s way to physics, starting from heuristics
and simple approaches, arriving at an almost complete solution, through all the necessary
steps.

In what follows the reader will not find, instead, a definite answer to (perhaps none of)
the issues addressed. Nevertheless, I will present a general, though quantitative enough,
critical reconsideration of some allegedly established beliefs and, for the issues left open,
are indicated the directions along which the right answers could be possibily obtained.

2. — The Fermi-Pasta-Ulam experiment

The results of the FPU experiment are usually alleged to disprove the validity of the
ergodic hypothesis and, consequently, of the Poincaré-Fermi theorem [25], as numeri-
cal integrations of the equations of motion showed an almost periodic behaviour of the
istantaneous energy distribution among the modes of different wave numbers, “To our
surprise, the string started playing a game of musical chairs, only between several low
notes, [...], afterwhat would have been several hundred ordinary up and down vibrations,
it came back almost exactly to its original shape” (from [24], p. 19).

Subsequent numerical works showed instead that this almost astonishing result ( “a
little discovery”, Fermi said(®)) was mainly due to the small energy given to the system
and to the too short integration time.

By now it is largely agreed that there are some thresholds separating different regimes
in the dynamics of FPU chains. From a thermodynamical viewpoint, the lower threshold,
related to the KAM behaviour, is of negligible relevance, as it tends to zero (quickly,
i.e. almost exponentially) as the number of degrees of freedom increases. It is more
interesting to investigate the applicability of the Nekhoroshev theory, which deals with
the finite time conservation of the actions. This latter theory, of undeniable utmost
relevance from the point of view of analytical mechanics, has been invoked [27] to explain
the existence of a threshold in the scaling of the relaxation times for FPU (and similar)
chains. However some inconsistencies survive, related mostly to the N-dependence of the
predicted threshold. It is thus generally recognized, at least in the Physics community
(though, admittedly, no rigorous proof exists), that a further threshold exists, whose
location depends, for a given Hamiltonian, only on the energy density and which does not
vanish in the Thermodynamic Limit (TL). This so-called strong stochasticity threshold
(SST) is clearly linked to the stochastic properties of the dynamics and the failure, with
respect to Fermi’s expectations, of the ezperiment performed on the MANIAC computer
can be attributed to the energy densities used, all below the critical energy density,
€. = (F/N)., characterizing the SST. Indeed it has been found [27-31], that FPU chains
show a quasi regular behaviour, associated to very long relaxation times, for € < €., and
a strongly chaotic dynamics, in turn leading to fast equilibration, above the threshold.

(°) How important Fermi actually considered those results was witnessed by his intention to
focus his planned Gibbs Lecture on them. Unfortunately, the cancer prevented him to achieve
that aim.
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Furthermore, it has been found that . is an intensive quantity, i.e. does not depend
on N. One can correctly speak about a threshold because of the qualitatively different
behaviours below and above €.. In fact, the dynamic properties undergo a rather abrupt
modification, witnessed, e.g., by a change in the slope of the maximal Lyapunov exponent
as a function of the energy density (see below for details), and the statistical behaviour is
drastically influenced as well, as pointed out by the very different scaling of the relaxation
times, changing from a strong (for € < €.) to a very weak (if any) dependence on £, above
the threshold.

3. — Strong stochasticity threshold and geometric properties of configuration
manifold

The existence of a SST has been proposed initially on the basis of numerical simula-
tions, and has found later some theoretical justifications. In the last decade, moreover,
the geometrical transcription of dynamics(®), revived [34] in the 80ths, helped to show
that the above threshold has a clean geometrical counterpart, which allows to obtain a
very convincing scenario for the onset of strong chaoticity in the FPU chains and similar
mdof Hamiltonian systems [31, 35, 32, 36].

As shown in fig. 1, already the first numerical integrations of the FPU model devoted
to investigate the nature of the SST gave some support to its possible relationship with
Nekhoroshev theory; though the predicted N-dependence of the critical value of the
energy densisty was not confirmed. Subsequent works (see, e.g., refs. [37-40]) seem to
support the interpretation that SST and Nekhoroshev theory describe two different kinds
of transition, and this is confirmed also by the geometrical approach [31,41,32], which
predicts, for the SST, a value which does not depend on N, in particular it remains finite
(i.e. does not vanish) in the TL.

Without going into details (see, e.g., the recent review [36]), we just recall the ba-
sic steps of the Geometrodynamical approach (GDA), needed to illustrate the results
obtained for FPU-like systems and the assumptions which have to be checked before
to extend those results to more general dynamical systems (as self-gravitating N-body
ones).

Within the GDA, the dynamical evolution of a Hamiltonian system with N degrees of
freedom is rephrased in terms of a geodesic flow over a suitable manifold(”), whose sta-
bility properties are determined by the Jacobi-Levi-Civita equation for geodesic spread:

V [(Vz°
2 -
@ ds(ds

)—i—HZzC:O (a=1,...,N),

where V/ds stands for the covariant derivative along the flow, {z*} is an arbitrary
perturbation to the reference geodesic, and the mixed tensor, H, describe the curvature
properties of the dynamical manifold. Under some rather mild assumptions [32], the
behaviour of a generic perturbation to a given geodesic (and then the stability of the

(%) Developed, among others, by Levi-Civita, Synge, Eisenhart and others (see ref. [32] for
references to these historical works) before 1930, and whose relevance for the issue of relaxation
in many-body systems was first realized by Krylov [33].

(") Which can be either Riemannian [34,41,31,32], pseudo-Riemannian [35,42,36] or Finslerian
[42,43].
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Fig. 1. — Scaling of maximal Lyapunov exponent A1 (circles, scale on the left) and of relaxation
time 7r (squares, scale on the right) with energy density. The figure has been generated from
data taken from ref. [27].

flow) can be reasonably(®) described using a single scalar effective equation, instead of
the N equations (2), which reads

d%z

where z = (gabz‘ﬂ'zb)l/2 is the norm of the perturbation (g,; being the metric over the
manifold) and kr[s] = Ric[q(s),u(s)]/(N —1) = H%/(N — 1) is the Ricci curvature per
degree of freedom in the (N — 1) two-directions determined by the flow.

For non-singular dynamics (i.e. Hamiltonian systems whose potential energy has a
finite lower bound whose absolute value increases at most linearly with N), like FPU
and similar models(?) the above effective equation (3) can be written [31,41, 35, 32],

(®) And the crucial point is just to determine what these two words, mild and reasonably,
actually mean, case by case.

(°) Many-body Hamiltionans with Lennard-Jones interactions, short-range coupled rotators,
AP*-models, and so on.
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equivalently(1?), as an evolution equation in terms of the Newtonian time t, related to
the affine parameter of the geodesic s, by a transformation ds = A dt, where the explicit
form of the conformal factor A depends on the manifold used [42]:

d?y

(4) qz TEWY =0,
where Y (t) and Q(¢) are simply related [41,42,36], to z[s(t)] and kg[s(t)], respectively.

Having made a long story short, we arrived at eq. (4) which has been the starting

point of a very elegant and effective method [45, 35] of computation of the maximal

Lyapunov exponent for mdof Hamiltonian systems. This approach, which make use of
the theory of stochastic differential equations [8], has been enormously successful [36].

Briefly, under suitable assumptions, analyzed below, the average growth rates of a

solution y(t) of eq. (4), are determined by the equation for the moments [8,45]:

a [ W) o 0 2 (%)
5) Sl = B 0 20 @) |
(yy) —Qo 1 0 (yy)

where Qo = (Q), O’é = (Q*)—Q3 and 7¢ represent, respectively, the average, the variance
and the autocorrelation time of the (hypothetically assumed Gaussian) stochastic process
Q(t). The eigenvalues of the above equations can be easily calculated [8] and, for the
present purposes, can be conveniently written in the following form [41]:

(6) =2/ (g5 1)

(7) fia3 = —\/% [91/3 —g P EiV3 (91/3 - 9’1/3)] :

where, for brevity of notation, it has been introduced the quantity g, defined as

(®) g=E&+v1i+e =1,
and, in turn,

902 T
9 = Q2

From the formulae above a series of results follow immediately:

- A ?Particular form of conservation of volumes in the space of moments; that is
2 iy i = 0.

(10) This point is somewhat controversial, in that there can be, in principle, the possibility that
the reparametrization leads to different answers as far as the stability of the flow is concerned [44].
There are however rather stringent arguments to exclude that this could happen for non singular
systems, whereas the issue is open for peculiar (e.g., gravitational) N-body systems.
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— As it is always g > 1, it follows that Re(u1) > 0 > Re(p2,3), with equality if and
onlyifg=1<+=¢=0.

— From the previous point it follows that, in the space of moments, there are always
two contracting and one expanding (or three neutral in the case & = 0) eigendirec-
tions.

— This means that, under the assumptions adopted to derive eq. (5), the average
asymptotic growth rate of |y(¢)|, i.e. the maximal Lyapunov exponent, is

(10) M =p/2 = % (gl/?’ —g’l/?’) .

— Thus, the instability exponent increases from zero, for constant, positive effective
frequency, Q(t), monotonously as the amplitude of fluctuations grows.

Before to discuss the limits of validity of this approach, let us showing how well it
works within these limits. The reliability of the GDA is witnessed by fig. 2, where, in the
upper panel, the maximal Lyapunov exponent is computed according to the Van Kampen-
Pettini formula, eq.(10), using the time averages of the geometrical observables [41,32].
As it follows immediately from a comparison with fig. 1, where the Lyapunov exponents
are computed using the standard BGS algorithm [46], in the (e region of overlap, the
agreement is very good(!!) and the GDA give a much faster and perturbation independent
method, which allows to extend the energy and N ranges of the simulations. However,
the simulations performed up to very high energy densities [41] allow to correct the first
claims about a scaling of the A (8e) o (3¢)*/3. Indeed, figure 2 shows clearly that,
while the scaling \; o €2 for € < &, is confirmed, above the threshold, it is instead
A1 o €'/4. This results has very deep implications on the nature of chaos of FPU
model; firstly because it raises some questions against the explanations of the nature of
stochasticity based on Random Matrices Approximation. Moreover, the scaling above
the SST suggests that the dynamics is in a regime of fully developed stochasticity, in
which the diffusion of orbits in phase space proceeds at the maximal rate allowed by the
dynamics. The bottom panel of fig. 2 shows indeed the same data of the plot above,
where the Lyapunov exponent A (3¢) is multiplied by the dynamical time, tp(Se), of the
system, which has been introduced in ref. [32] and whose precise meaning is described
below. Furthermore, the extension of numerical simulations to larger N, confirms the
N-independence of the threshold, thus giving further support to the idea that the SST
marks a different transition to chaos with respect to the one predicted on the basis of
Nekhoroshev theory.

The above interpretation of a strong chaotic regime above the SST is further confirmed
by the comparison of the A; values reported in fig. 2, in which the parameters entering
egs. (6), (10) are computed as time average along numerically integrated trajectories,
with the analogous results obtained by Pettini and coworkers [45,35], who used the same
formula(1?), using instead the phase space averages of the same parameters. The results

(*') Notice that data in fig. 1 are expressed in natural logarithms.
(*?) And the Eisenhart geometrization, rather than the Jacobi one. However, for FPU-like
systems and for N > 1 they are equivalent, as discussed in detail below.
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Fig. 2. — The upper plot shows the energy density dependence of the maximal Lyapunov exponent
for different FPU-3 chains. For a given (e, are reported the values of A1 computed according
to equation (10), for N ranging from 50 to 450 and anharmonicity parameter 3 varying in the
interval [0.05,0.2]. The significant parameter is clearly Se. The lines indicate the slopes (B¢)?
and (Be)*/* and cross each other (conventionally) in correspondence of the SST. In the lower
plot the A1 values are multiplied by the dynamical time, tp(8¢), (see text), showing that the
quantity A\itp is virtually constant above the SST. Below the threshold the slope is a >~ 2.

agree completely(1?), thus proving that, above the threshold, strongly chaotic dynamics
is accompanied by physical ergodicity, relaxation is fast for every N and the equilibrium
values do not show any dependence on N (provided that N > 1). On the contrary, at
low energy densities there is a weak N —dependence, both in the values of the Lyapunov
exponents and in the relaxation rates towards equilibrium.

(**) Except at very low energy density, thus confirming a lack of ergodicity in the quasi-integrable
limit, or, more probably, very long ergodicity times [47], though, from a physical viewpoints,
either interpretation does not make a relevant difference.
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3'1. Geometric signature of the SST: numerical and analytical evidence. — Up to now
we have mainly reviewed and commented the emergence of the SST from dynamical and
statistical viewpoints. It is obvious however that the results based on the computation
of the maximal Lyapunov exponent through eq. (10) shows how the geometrical features
of the manifold detect, at least indirectly, the transition.

Therefore it is natural to see whether the SST has also a more direct signature within
the GDA. We will see that this is indeed the case and, moreover, this will lead also to
clarify the meaning of the dynamical time introduced above.

Referring to the literature (e.g., ref. [32]) for the details of the steps leading from
eq. (2) to eq. (3), let us start from the explicit expression of the effective frequency,
as it can be determined, without loss of generality(1*), within the Jacobi GDA, for a
N-degrees of freedom natural Hamiltonian system, reads

(1) Q) =57 + u

. . 2
AU (VU 1 |W 3 (W
N TNW TN |w 2 ’

where H = (1/2)a;;G'¢’ + U(q) = E is the conserved Hamiltonian, W = (E —U) is a
shorthand for the total kinetic energy and, as usual, dots stand for (Newtonian-)time
derivatives.

For the FPU-G system, that is, for chains of N coupled anharmonic oscillators with
Hamiltonian

2
S P U — )| wi _ L1z, B
(12) H—;[Qm—i-U(qu ¢i)| with U(ac)—Qx +5%

and, e.g., periodic boundary conditions, gn4+1 = ¢1 and go = qu, in the large-N limit, the
last two terms in the expression of Q(t) give essentially no contributions, neither to the
average o, not to the amplitude of fluctuations . Also the (squared) gradient term,
though with a comparatively weaker N-dependence, tends to disappear in the thermody-
namic limit. All this is well evident from fig. 3, where the numerically computed values
of the (time) averages of (rescaled) Ricci curvature (squares) kr = 2W?2kpg, effective
frequency @ (circles) and Laplacian of the potential energy per degree of freedom AU/N
(triangles) are shown, for FPU chains of different lengths (from N = 50 to N = 450),
against the parameter (e, which measures the departure from integrability. From the
figure it emerges clearly that the average values of the three quantities are almost the
same, unless conditions very near to integrability are considered and/or the number of

(**) Tt is obviously out of place here, but it can be easily shown [42] that the different GDA’s,
based on Jacobi (Riemannian), Eisenhart (pseudo-Riemannian) or Finsler geometries, differ only
in the ranges of applicability; and that, for natural and non singular Lagrangian systems, which
can be geometrized in all the settings, all them give the same results as long as the number of
degrees of freedom is large! The differences between the various geometrizations indeed vanish
in the large N limit (at least) as E/N?, where E is the total energy. If the governing interaction
is stable [48], then it follows that, in the large N limit, all the results are independent from
the particular geometrization adopted. This, again, is not necessarily true if the interaction
potential is not stable, in which case some differences could survive.
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Fig. 3. — Energy density dependence of curvature related quantities. Circles, squares and tri-
angles refer, respectively, to the averages of kr, Q@ and AU/N, computed along numerically
integrated trajectories of FPU chains with N ranging from 50 to 450 and anharmonicity param-
eter B varying in the interval [0.05,0.2]. Data are taken from ref. [41].The significant parameter
is clearly Be. The thick curve refers to the analytical formula described in the text, while the
thin lines are simply a guide for the eyes and help to locate the geometrical (counterpart of the)
threshold.

degrees of freedom is small(*®). From this and the inspection of eq. (11), it is clear
that, at least for FPU chains, the terms additional to the Laplacian in the expression for
Q(t) give a negligible contribution to the average. It can be verified [41] that, as far as
the amplitude of fluctuations is concerned, the situation is almost the same, with some
greater discrepancies for low N at very small energy densities. Thus we can conclude
that, at least enough far from the quasi-integrable regime and for sufficiently large N,

(**) For a given value of e, multiple values of dependent variables are plotted, for different
values of N, though in most cases they virtually coincide.
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the stability of motions depends only on the behaviour of the Laplacian term appearing
in Q(t)(*°).

In the case of FPU models, for many geometric quantities it is also possible to obtain
reliable (semi-)analytical estimates. Indeed, if we define (6¢) = (g;+1 — ¢;); and put

L {8q") = (6¢%)*
(13) nE Ay

using the virial theorem in its most general form, we find that the ratio between anhar-
monic and harmonic potential energies depends only on e and n

(14) (U) _ % (\/1 ¥ 38e(1+n) — 1) .

(Ua)

Using again the virial, an analytic expression for the Laplacian is found:

(15) %=2+i(\/1+3ﬁg(1+n)—1) :

1+n

From numerical simulations it is easy to obtain a numerical estimate of the correlation
term 7 and, finally, the closed form:

(16) %:2[1—1—(\/1—&—6&—1)} 7

which is plotted as a continuous (thick) line in the same figure 3 and is in very good
agreement with experimental data.

Moreover, we see that the GDA give a consistent, direct and convincing evidence of
the existence and location of the SST. It can be conventionally located by the crossing of
the two asymptotic behaviours of the Laplacian, and a direct comparison with the plot of
the scaling of the maximal Lyapunov exponent of fig. 2 show the good agreement between
the dynamical and geometrical signatures of the threshold. Along with the equally well
convincing correspondence between dynamic and statistical mechanical thresholds, this
completes the path from SM to GDA.

3'2. The dynamical time scale and the adimensional instability indicator. — The steps
which allow an analytical estimate of the scaling of AU(Be)/N, turn out to help the
explicit computation of the above introduced dynamical time scale, tp(fe); which, at
a heuristic level, gives the overall rescaling, when the energy density changes, of any
dynamical process occurring in the chain.

(*%) Nevertheless, it should be emphasized that the approach necessarily fails in the quasi-
periodic regime and at small N, where, for example, negative values of the curvature kr occur
more frequently than in the high energy regime, and persist for very long transient periods.
This is clearly due to the large collective oscillations accompanying the virialization process,
during which the terms containing the time derivatives in eq. (11) can assume relatively large
values. The combined effects of small N (these terms vanish in the TL at least as N ~*/2), along
with the very slow phase mizing due to quasi periodic behaviour [41,32] invalidate the starting
assumptions at the grounds of the approach leading to eq. (10).
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It is well known, indeed, that in FPU-like models it is possible to introduce the
normal modes frequencies, which describe the hierarchy of time scales associated with
the dynamics of phonon-like excitations. Those frequencies do not depend however on
the energy density, have always a maximum which is O(1), whereas the lowest frequencies
scale as O(1/N). To the extent that the chain is near the integrable (e.g., harmonic)
limit, normal modes frequencies suffice to describe the dynamics of the system; however,
when the departure from integrability is strong, i.e. when the anharmonic interaction
tends to become comparable with the harmonic one, the normal modes hierarchy does
not more describe correctly the internal dynamics (and even the very definition of normal
modes loses partially its meaning).

There are several ways to extract an energy dependent overall time scale for anhar-
monic systems, many of them can be based simply on dimensional arguments and give
the correct qualitative behaviour [41]. In order to obtain a more guantitative estimate,
we proceed in complete analogy with what is done in stellar dynamics, where a proper
(dynamical) time scale is defined as the typical time required for a star to cross the sys-
tem. In that case it is assumed a sort of energy equipartition between the stars, and in
this case we have to make a similar assumption, which, however, cannot be extended to
the normal modes, just because for them it is clear that equipartition holds only after
the systems has relaxed and the conditions for the equipartition among them is one of
the main issues. The simplest and most safe assumption, rigorously verified by inverse
experiments of any kind, is that each oscillator has, on the average, the same energy. As
the FPU system is an extensive one, independently of the N and e values, we can assume
that this average energy is of the order of the energy density itself. Simple dimensional
arguments indicate that the tp(fe) scaling is related to the ratio of the anharmonic to
the harmonic potential energies. We write, for the maximal values of these potential con-
tributions to the total energy, respectively, Uy, and Us,, ., and the rather intuitive
parametric pair of equations:

(17) U2MAX (77) = E cos® ¥ and U4MAx ("7) = Esin’ ®

where 1 has been defined in eq. (13) and ¢ = ¢(n) is an obvious measure of the departure
from the harmonic regime.

Using the virial theorem, in complete analogy as before for the determination of the
analytic formula for AU, a quantitative expression for the dynamical time scale is found:

|/ BT+ 1) —1 dz

(18)  tp(Be) =2v2 et + ]

\/1—962 cos? ¢ — x4 sin’ cp

Taking into account that from numerical simulations we have a precise measure of 7, the
expression for ¢tp can be written in closed form as

(19) tp(e) = 4[0(5e)]"* £xc [[1 - 0822 .

where Ex () is the complete elliptic integral, defined in terms of the incomplete elliptic
integral,

dt

VI—22V/1+22¢e2’
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as Ex(x) = Ep(1,x); and we defined moreover,

o5 _ VITEFE -1
() = L —

Despite its seemingly complicate expression, the essential Se-dependence in the above
equation is almost completely represented by the ©'/2 term. Indeed, the argument of
the elliptic integral varies only in [0,1] and the variation of Ex () within this range is
very small. In the harmonic limit, e — 0, it is evident that © — 1, and then

Jim £x[(1-0)"] = £c(0) = g =~ 1.5708... .

On the other hand, when e — oo, ©(fe) — (Be)~ /2, so that

73/2,/3

lim Ex[(1-0)Y2] =Ex(1) = >~ 1.311... .

2
Pemmee 41 (3)]

Incidentally, as ©(8e) ~ (Be)~/2 at high energy, eq.(19) shows that in the high energy
density regime it is tp o (Be)~ /% Recalling the scaling of the maximal Lyapunov
exponent above the SST, this result explains the significance of the lower panel in fig. 2,
i.e. why v1 = Atp is almost exactly constant above the threshold, an observation of
crucial relevance for the interpretation of the nature of the chaotic behaviour above the
SST.

It must be observed that the result of the above computation differs very much in the
form from those based on more naive approaches. For example, an estimate based on
simple dimensional arguments leads to the much simpler expression

—1/2

(20) tp,(Be) = |:1+§ (\/1+3ﬂ51)] ,

which, as shown in fig. 4, gives values appreciably different from those obtained from the
exact equation (19). Nevertheless, if the dimensional arguments are complemented by
numerical estimates on the degree of correlations among nearby sites, then the results
obtained are in a much better agreement with the ezact ones, though, formally, the
corresponding expressions still differ from eq. (19).

To illustrate this fact, in fig. 4 we report, along with the ezact and the naive curves
predicted by egs. (19) and (20), respectively, also two other semi-analytical estimates,
based on the virial theorem and numerical estimates of suitable correlation functions,
reading as

9 —1/2
) o, (58) = 145 (VIT O T 0 - 1)]

and

V1+4Be(1+n) —1
48 — gy | VI +38e(T 1) — 1]

(22) tp,(Be) =tp,(0)
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Fig. 4. — The curves show the behaviour of the analytical estimates of the dynamical time
scale, tp(Be), according to the various formulas discussed in the text. The line on the right
indicates the asymptotic behaviour of all the above estimates, tp(8e) x (B¢)~Y/* and the
symbols represent the numerical estimates of the dynamical periods associated to the effective
frequencies governing the evolution of perturbations within the GDA.

where 7 is the same quantity defined above, eq. (13), and ( is related to the correlations
of the form (g;g;+1) and similar ones.

Despite that rather different look, the last two estimates are in satisfactory agreement
with the exact one; and, moreover, they agree rather well even with experimental values,
shown also in fig. 4. The different symbols represent the experimental, numerical determi-
nations of the correlation times for the geometrical and dynamical quantities determining
the evolution of perturbations, that is kg, @ and AU/N. The analytical estimates, ex-
cept the one given by eq. (20), are in a complete agreement with the numerical data.
The ezact expression is only slightly better than those based on dimensional arguments
alone, pointing out how the virial theorem, in its more general form [41,32,49], captures
all the essential time-energy scaling of internal dynamics.

The previous results show that, starting from two completely separate approaches, it
is found that the scaling of the instability time, as measured by the (reciprocal of the)
maximal Lyapunov exponent, and the dynamical time, for the FPU-3 model, scale, in
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the strong stochastic region, exactly at the same rate(!7).

This evidence, suggests a new invariant criterion to detect the SST, or, more precisely
(and generally), the onset of the regime in which the spreading of orbits proceeds at
the maximal rate allowed by the underlying dynamics. It can be defined using the
adimensional chaoticity indicator v; = A1tp: the onset of fully developed stochasticity
is detected by the constancy of the indicator ~;.

This rather trivial generalization has some relevant consequences in those frameworks
where the time scales of the systems under study change rapidly varying some parameters
(e.g., the energy, the external field, etc.), and also for systems undergoing intermittent
evolution, where quiescent and irregular phases are intermingled and characterized by
very different time scales. Furthermore, the introduction of an adimensional instability
measure, get rid of most of the ambiguities raising in those settings where the choice of
the appropriate evolution parameter (e.g., in general relativistic dynamical systems) is
an issue.

Among the most important problems which can get some important hints from the
above discussion, I mention briefly the issue of the statistical mechanical and thermody-
namical description of N-body self-gravitating systems. For them the above analysis has
some noteworthy consequences [50,51]: it is found that, with all the remarks and warn-
ings appropriate to their intrinsically peculiar nature(!®), it can be guessed that they are,
at any binding energy, in a state of strong stochasticity. On the basis of a fast mixing
hypothesis [50,51], this allows to propose a coherent thermodynamic setting, which give
a dynamical justification to many phenomenological descriptions adopted previously.

Referring to the cited bibliography for a complete account of the suggestions and
results which can be obtained from the GDA in order to understand better the onset of
instability in more general Hamiltonian systems than FPU-like models, I will conclude
this contribution trying, as said in the Introduction, to deepen the investigation of the
dark side: in the next section a list of concrete and practical remarks are presented which
should be taken into account, before to carry out any direct extension of the approach.

4. — Check of the hypotheses at the ground of the analytical computation of
the maximal Lyapunov exponent

Already the steps illustrated in the previous section point out that a critical reconsid-
eration of the general setting is in order if an extension of the framework to systems of
different nature than FPU-like models is sought. Therefore, we recall the key hypotheses
at the grounds of the method and proceed to verify their limits of validity:

— The fundamental assumption for the application of the Van Kampen formulae, is
that the (squared) frequency, Q(t) represents a faithful realization of a stochastic
process. This amounts to say that the distribution of the @ values should be
reasonably well described by a gaussian and that the autocorrelation function of

(17) This derivation, incidentally, devoids of any content the assert, sometimes reported, accord-
ing to which the dynamical time is defined as the reciprocal of the maximal LCN: the dynamical
time exists and is finite, according to the above prescription, even for completely integrable
systems, when the Lyaunov time is infinite!

(18) And already pointed out by Gurzadyan and coworkers in a series of papers [52,53].
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Q(t) can be approximated, on the time scales of the evolution, as a §—function, e.g.,
(QUE+1)Q() = QF + a§ (1)

— From a physical perspective, this amounts to say that the evolution of Q(t) must
be fast with respect to the dynamical time scales. Geometrically, this means that
the effective curvature is a strongly fluctuating quantity.

— To the above arguments, it must be added the following trivial consideration: in
all the derivations it is assumed that @Q(t) is a non-negative quantity, although it
can be argued that, if the probability of occurrence of negative values is sufficiently
small, then the growth rate of the solution is accurately represented by A;. Thus,
it follows that, if the amplitude of fluctuations exceeds the average value, g > Qo,
then the frequency cannot longer be assumed as positive definite, and the approach
does not work anymore.

— A further obvious breakdown of the method occurs when the dynamic evolution is
quasi-periodic. In such a case, indeed, independently of the amplitude of fluctua-
tions, the values of £ and g can be arbitrarily large, and so A; can formally increase
even if the underlying dynamics is not chaotic('?).

— As, in practice, the Q(t) is self-consistently generated by the dynamics itself, and
depends on the evolution of state space coordinates of the system, it is clear that a
full justification of the validity of the approach must be always checked a posteriori.
That is, if the underlying dynamics is not enough chaotic, then the fluctuations of
Q(t) cannot be assumed as stochastic, and the instability rate predicted by the
use of Van Kampen formula can be, at best, an upper limit to (twice) the true
Lyapunov exponent.

— Stated otherwise, eq. (6) is hardly valid in the quasi-constant curvature limit. It
could be guessed that there must exist some threshold £, below which the predicted
instability exponent cannot be exact. However the estimate of this possible limiting
value is not so immediate. Indeed, if it is clear that the shorter the correlation
time 7¢, the greater must be the fluctuations, in order to keep constant the value
of ¢ (and, then, of g), on physical grounds, it is instead plausible that, for very
short correlation times, even small fluctuations can lead to stochasticity. Indeed,
it follows from eq. (10) that, in the small fluctuation and small correlation times,

that is, for £ — 0, it is pug Q(l)/2£.

— It is otherwise clear that in the opposite limit, that is for £ > 1, the above formula
is not more justified. In fact, neglecting numerical factors, we have

2
~ (%2
‘ (Q)

(*°) This is indeed what is really observed for nearly integrable conditions and when the num-
ber of degrees of freedom is not large enough, so that statistic relative fluctuations, of order
O(N -1/ 2), mimic true curvature fluctuations. In these cases the Van Kampen-Pettini formula,
eq. (10), clearly overestimates the instability rate.
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where tqg = Qal/Z sets a sort of geometrodynamical time scale. Thus, values of
¢ greater that a few units, immediately imply the failure of at least one of the
assumptions: if £ > 1, then, necessarily it must be either og > Qg or 7g > t¢ (or
both). In the first case the hypothesis of a positive frequency is not more verified,
in the second even the very definition of §-correlated stochastic process could be
questioned. Furthermore, in the limit £ > 1, the expression for the instability
exponent can be rewritten as

)\1 ~ t81§1/3 ,

which, to my knowledge, has never been observed. What happens, in FPU-like
models, is that, increasing the energy, and then the degree of chaos, the correlation
time goes to zero (as shown in the previous section and in fig. 4) so that the
limit £ > 1 is never reached, except when the number of degrees of freedom is so
small that the existence of conserved quantities introduces quasi periodicities and
spurious long time correlations, even in the presence of chaotic dynamics.

As we have seen, in the case of FPU model it is easy to test the validity of the
approach against the possible sources of inconsistency listed above. Both the Gaussian
distribution of the () values can be checked and the autocorrelation time 7g can be either
analytically estimated and numerically computed [41]. The limits of validity of the Van
Kampen-Pettini formula are easily located and the results obtained are in a comfortable
agreement with those obtained with other approaches.

Figure 5 shows, for an intermediate energy density, that the gaussian distribution
of curvatures and frequencies is indeed a rather well satisfied hypothesis, both for what
concerns the their values and (still better) for their time-derivatives as well. It must be
mentioned that, while the distributions of the Laplacian and of Hill’s frequency @ share
common averages and widths, the kgr-distribution is much broader. This evidence hints
at reconsider the applicability of the Van Kampen-Pettini approach within the purely
geometrical setting related to the Jacobi metric. Though this remark is not of so much
relevance for the FPU models, it can have deep impact on the general applicability of
the method. In particular, in the case of large fluctuations all the results appealing to
the existence of an average curvature lose their justification.

Let us then analyze from where the most serious hindrances to the application of
the method above can originate, considering that we have in mind the extension of the
approach to the gravitational N-body problem.

— For systems with non smooth interactions, the curvature fluctuations are usually
much bigger than for FPU-like potentials, unless there is a minimum in the in-
teraction potential (e.g., LJ or Morse systems) and the energy density is slightly
above that minimum. This amounts to say that fluctuations are comparable with
mean values as soon as the departure from the integrable limit (if it exists!) is
appreciable.

— Nevertheless, non smooth potentials usually imply a very large spectrum of time
scales and often also non homogeneous distributions. This partially can compen-
sate the consequences of the previous remark, as it can lead to very fast decay of
correlations, that is to very small correlation times.

— Obviously, large fluctuations imply that the assumption of an everywhere positive
curvature is hardly fulfilled. In the case in which the frequency of negative values
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Fig. 5. — Check of the Gaussian distribution of the values of curvature and frequencies. A) In
the left column, from bottom to top, are shown, respectively, the distributions of kr, @ and
AU/N. Thick curves represent the actual distributions as obtained from long time numerical
integrations of dynamics (data taken from [41]), while thin curves represent the best fits with
a Gaussian (N.B.: notice that vertical scales are in log-scale). B) Distributions of the time
derivatives of the quantities represented in A). Except for the Ricci curvature kg, where a clear
asimmetry is evident, all other quantities are well distributed according to a Gaussian. Data
refer to an intermediate value of fe, near the SST.

is appreciable, instability can originate both from mechanisms like those described
above, and also from the local instability related to negative curvature. Any at-
tempt to estimate analitically the instability growth rate is in such cases hopeless.
At the other extreme, if the curvature is almost everywhere negative, then the es-
timate of the instability time is possible, though this is not the case for almost any
realistic model of physical many degrees of freedom system(?°).

— In systems with non extensive interactions (e.g., self-gravitating N-body systems),

a strongly unstable evolution, with fast phase mizing and decay of correlations,
can coexist with very long time correlations of collective degrees of freedom, asso-
ciated, for example, with the Virialization process (e.g., with the Violent Relazation

(20) Though there is no rigorous proof of this statement. For instance, V. Gurzadyan (private
conversation, see also ref. [34]) confirmed to the author that spherical stellar systems constitute
probably an example of a system for which the assumption of almost everywhere negative
curvature can be verified rigorously.
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phase). A signature of this phenomenon, though with much weaker consequences,
is present even in the FPU model, where the probability of negative curvature
values is relatively high when the system is left to evolve from initial conditions
far from (global) equilibrium. After that equilibrium is attained, that probability
becomes vanishingly small [32].

— Obviously, systems with singular interactions, in consequence of what stated above,
support even more reliably the assumption of uncorrelated fluctuations, just be-
cause a singular two body interaction can occur almost indepedently from a pre-
vious one [54]. Furthermore, the hypothesis of uncorrelated fluctuations depends
crucially on the dimensionality of the systems, being much more easily fulfilled in
3D-systems than in one-dimensional chains.

— Most of the results on FPU-like models, and in particular the analytical computa-
tions of A; on the basis of eq. (10), greatly profited of the possibility of canonical
estimates of geometric quantities [35]. This is legitimate in systems like FPU, pro-
vided that ergodicity (and mixing) can be safely assumed. Indeed, in this case,
time averages coincide with microcanonical phase averages. As the system is tem-
pered and stable, then the rigorous theorems [48] assert that microcanonical and
canonical averages coincide in the TL (differences being at most of order O(1/N)).
Indeed the results obtained in [41, 32], through dynamical (i.e. microcanonical)
numerical integrations of equations of motion show a very good agreement with
those obtained in [45, 35, 36], using phase space averages. Clearly both the logi-
cal steps above can be questioned for systems with non compact phase space and
non-extensive interactions: ergodicity and mixing cannot be rigorously defined and
the equivalence between microcanonical and canonical ensembles does not hold. In
refs. [50,51] possible solutions to these issues are discussed.

— The above points can be summarized saying that, while for FPU-like models it is
clear that fluctuations are responsible for the onset and development of chaos, this
simple paradigm cannot be extended to peculiar Hamiltonians. This also because,
in the most general case, the simple order of magnitude estimates which allow to
claim, for FPU, that in the large-IN limit the fluctuations come essentially only
by the first two terms in the right hand side of eq. (11), are not so easy, and the
relative weight, in the fluctuations, of various terms must be checked carefully.

— Although the dynamics of singular systems can be, in a sense, strongly chaotic, it is
possible that some relevant collective quantities, included those used in the GDA,
can have virtually infinite ergodicity times, so that phase and time averages lead
to conflicting indications.

Notwithstanding all the remarks above, it is worth to emphasize that the GDA helps
to deepen the understanding of the interplay between the energy and time scales, leading
naturally to operate a due distinction between mathematical and physical ergodicities,
arguing that the latter (alone) can be relevant for a statistical mechanical description. As
remarked already before, as long as the system is above the SST, that is, if the dynamics
is strongly chaotic, then a complete and precise agreement exists between the time and
phase averages of any geometrical and dynamical observable. However, the agreement
remains very good even below that threshold if the number of degrees of freedom is large
enough. The ergodicity times, however, increase rapidly with N. It is puzzling to observe
that the same happens for, e.g., self-gravitating systems, notwithstanding they seem to
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be in a dynamic regime at least as chaotic as FPU chains well above the SST. This points
out once more that the analogic method is often a good guide to guess the behaviour of
more complex problems, but, if left alone, without any further rigorous investigation,
can sometimes lead to dangerous conclusions.

5. — Epilogue

I started my Ph.D. as an astrophysicist, (at least, this is what I was believing). For
a true trick of the fate, I met the FPU problem, without intention, and this problem
became afterward my principal interest for two years, forming then the core of (more
than half of) my Ph.D. Thesis.

I cannot say whether the crossing of my life with the FPU problem was lucky or
not, what is sure is that it marked a threshold, and as such, I feel still today, fascinated
and at the same time frightened by its immense richness of faces and traps. And this is
amazing, because I was attracted by the FPU problem because of its deceptive simplicity,
as, perhaps [55], many others. Yes, indeed what surely I like is the Fermi’s first approach
to problems, “based on simple math”; and I tried, in the pages above, to learn the Fermi’s
lesson, avoiding to take for granted what is not demonstrated, without however to give
up to being guided, in the first investigations, by intuition and analogies. Probably I
didn’t succeed more than slightly; nevertheless I hope that the few good remarks can be
useful to my own future works and, perhaps, also to other people.

People who worked with Fermi learned from him how to face physical problems; they
better than others can pass to us the atmosphere around him at work.

It seems appropriate to finish with these few notes, by Stan Ulam [24], which was
involved with Fermi in the project and realization of the study which has been the central
point of this contribution. They point out once more how Fermi’s personality reflected
coherently in his work.

“His [Fermi’s| eyes, darting at times, would be fized reflectively when he was consider-
ing some questions. He would try to elucidate other persons thoughts by asking questions
in a Socratic manner, [...] . I think he had a supreme sense of the important. He did
not disdain work in the so-called smaller problems; at the same time, he kept in mind
the order of importance of things in physics. This quality is more vital in physics than
in mathematics, which is not so uniquely tied to reality”. (p. 15)(*!).

“As soon as the machines were finished, Fermi, with his great common sense and
intuition, recognized immediately their importance for the study of problems in theoretical
physics, astrophysics and classical physics”. (p. 19).

And, after a personal reflection [24] (p. 19), “Now Banach, Fermi and von Neumann
were dead—the three great men whose intellects impressed me the most.”; another Ulam’s
memoir on Fermi, reported by a close friend of him [24] (p. 27): “{Ulam| admired Fermi’s
genius for solving physical problems with the minimum amount of math. Since that time
Fermi remained for him the ideal of a scientist. I his old age he liked to repeat that Fermi
had been the last physicist”.

X k%

To MARIA TERESA, for her patience and for having forced me to go a little beyond

(®Y) That is, a physicist should not be fashinated by elegant mathematical approaches, unless
they improve the physical understanding of the phenomena.
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our interests. This however did not prevent him to unselfishly support my activities. To
M. PETTINI and L. GALGANI, for continuous moral encouragements and many inter-
esting discussions. To A. POLITI, for many seemingly unrelated discussions, not really
so; and also for his tolerance. To V. GURZADYAN: I have profited very much, since the
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